Embeddings
Overview
Embeddings transform text into high-dimensional vectors that capture semantic meaning, enabling powerful similarity search, clustering, and machine learning applications.
Learn more about embeddings in our detailed guide covering use cases, best practices, and model selection.
Create Embeddings
POST/v1/embeddings
Converts text into dense vector representations. Supports both single strings and batch processing for efficiency.
Authorization
- Authorization
Authorization
- Type
- string
- Required or Optional
- required
Bearer token for API authentication. Format: `Bearer YOUR_API_KEY`
Request Body
- input
input
- Type
- string|string[]
- Required or Optional
- required
The text or list of texts to generate embeddings for.Constraints:Texts will be truncated if longer than the model's maximum sequence length- model
model
- Type
- string
- Required or Optional
- required
The identifier of the embedding model to use.Constraints:Must be a valid model. Refer to our supported models.- prompt
prompt
- Type
- string
- Required or Optional
- optional
An optional context prompt for the embedding model.- normalized
normalized
- Type
- boolean
- Required or Optional
- optional
Specifies whether output embeddings should be normalized to unit length.- dimensions
dimensions
- Type
- number
- Required or Optional
- optional
The desired dimensionality of the output embeddings for supported models.- encoding_format
encoding_format
- Type
- string|string[]
- Required or Optional
- optional
The desired encoding format for the output embeddings.Constraints:Options: float, float16, base64, binary, ubinary, int8, uint8
Response Body
- model
model
- Type
- string
- Required or Optional
- required
The model identifier used for the request.- object
object
- Type
- string
- Required or Optional
- required
The type of the response object.- data
data
- Type
- object[]
- Required or Optional
- required
A list containing the generated embedding objects.- usage
usage
- Type
- object
- Required or Optional
- required
An object detailing the token usage for the request.- normalized
normalized
- Type
- boolean
- Required or Optional
- required
Indicates if the returned embeddings are normalized.
Vector Stores
API reference for managing and searching Mixedbread Vector Stores. This documentation covers all essential endpoints to work with vector stores and their associated files.
Files
API reference for managing files in Mixedbread. This documentation covers all essential endpoints to get you started with file management.
Last updated: June 11, 2025